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Abstract

By modeling user preferences, a data mining system is able to present mining results (patterns) that ac-
commodate users’ interests. However, as many state-of-art data mining systems lack any mechanism of
measuring the amount of additional knowledge conveyed by mining results given what a user already knows,
they might: a. provide patterns that are trivial according to the user’s semantic knowledge, b. filter out
patterns that are syntactically redundant but still convey knowledge that is new to the user. As a con-
sequence, these data mining systems could be inefficient in delivering new knowledge according to different
background knowledge of users. To address this issue, we introduce in thesis a knowledge model that ap-
proximates a user’s current knowledge about a dataset and computes the so called subjective unexpectedness
of pattern measurements (mining results). The computed subjective unexpectedness serves as an indicator
that indicates the amount of additional knowledge conveyed by pattern measurements, in addition to what
a user already knows. This thesis also describes the implementation of the knowledge model for a specific
measurement type (i.e., frequency measurements) within a concrete data mining system, i.e., the One Click
Mining System (OCM). To evaluate the effect of the knowledge model implemented in OCM, a user study
is designed and conducted. The design and results of the study are documented in this thesis.

The knowledge model is potentially applicable to any data mining system in which the knowledge about
datasets is conveyed to users via pattern measurements. In practice, the result of the user study confirms
that the OCM system with the knowledge model provides users new knowledge more efficiently than the
system without the knowledge model. We expect to generalize the knowledge model such that it is applicable
to different data types. In order to efficiently compute in practice the subjective unexpectedness for more
pattern measurement types, various implementation techniques remain to be investigated.
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Chapter 1

Introduction

1.1 Background and Motivation

Many state of art data mining systems (e.g. WEKA [Hall et al., 2009], Rapid Miner [Mierswa, 2009])
require the user to construct a workflow with an explicit selection of data mining methods, parameters and
algorithms. This adds too much overhead to the users who are not data mining experts. To eliminate
the user’s burden on constructing an efficient data mining workflow, Boley et al. [2013] proposed the so
called “One Click Mining” (OCM) framework. The framework models user preferences of mining results
(patterns) by interpreting user-systems interaction as users’ implicit feedback. Based on the user preference
model, OCM constructs a user-oriented mining process by automatically operating the mining algorithms
and ranking the mined results. When exploring a dataset by interacting with OCM, a user gains knowledge
about the dataset via patterns. Syntactically a pattern is represented by two parts: the description of a
pattern that gives a statement about the underlying dataset and different types of pattern measurements
that indicate numerically how interesting a pattern is according to some predefined measure functions.
Hence modeling user preferences is essentially approximating a user’s interests of the syntactical knowledge
conveyed by patterns.

While OCM provides mined patterns with user preferred syntax, it lacks any mechanism of measuring
the amount of additional knowledge conveyed by patterns in addition to what the user already knows, i.e.,
the semantic knowledge of patterns. This has two negative consequences: first, the OCM framework might
present the patterns with high utilities but are trivial according to a user’s current knowledge; second,
it might filter out the patterns with certain syntactical redundancy but are potentially interesting to the
user when constructing pattern rankings. This means the OCM system can be inefficient in delivering new
knowledge according to different background knowledge of users. Hence, to address this issue, we need to
capture a user’s semantic knowledge about the dataset that the user is working on and measure the new
knowledge conveyed by patterns based on the user’s current knowledge state. De Bie [2009] proposed a
model to quantify such new knowledge by measuring the so called subjective unexpectedness of patterns.
The model represents the user’s knowledge state by a so called background distribution which is retrieved
from a constrained family of distributions by applying the max entropy principle. The unexpectedness of a
pattern is then determined by trading off two factors: the probability of the pattern’s appearance under the
background distribution and the pattern’s complexity. However, as in OCM knowledge is conveyed by both
pattern descriptions and pattern measurements, further modeling a user’s unexpectedness with respect to
description and measurement is required.

Motivated by this requirement, this thesis investigates a general framework of measuring subjective un-
expectedness of pattern measurements in any data mining system that conveys knowledge about datasets
(partially) via pattern measurements, and refers to this framework as the knowledge model. We leave mod-
eling unexpectedness for pattern descriptions as a future work. The thesis also explores possible efficient
implementations of the knowledge model. Finally, this thesis presents a user study that evaluates the effects
of applying the knowledge model in OCM.
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1.2 Contributions

There are three contributions of this thesis:

1. Investigating an framework of quantifying subjective unexpectedness for general pattern measurements
(the knowledge model). Instead of measuring subjective unexpectedness of a pattern, we turn to
measure the unexpectedness for different types of pattern measurements. We quantify the subject-
ive unexpectedness of a pattern measurement as the difference between the measurement observed in
current working dataset and the user’s expected measurement of the same pattern under the back-
ground distribution. This framework is potentially applicable to any data mining system in which the
knowledge about datasets is partially conveyed to users via pattern measurements. This framework is
discussed in Chapter 3.

2. Developing an algorithm that efficiently computes the subjective unexpectedness with respect to a spe-
cial type of pattern measure, i.e., the frequency measure. In general, the complexity of computing
unexpectedness of pattern measurement is exponential in terms of the input dataset size. However,
the subjective unexpectednesses of frequency measurements can be computed with complexity that is
exponential in the number of user investigated patterns. As the cognitive energy of a user is limited,
for each analysis task, the number of patterns that the user is willing to investigate is usually small.
Hence in practice our algorithm is scalable in terms of dataset size and computes the subjective in-
terestingness of frequency measurements more efficiently than the general approach. This algorithm is
described in Chapter 4.

3. Designing a repeatable and scalable user study that evaluates the benefit of applying the knowledge model
in OCM. We applied the algorithm of computing subjective unexpectedness for frequency measure-
ments in OCM (in Chapter 4). According to the motivation of the knowledge model, we defined a
hypothesis: “By quantifying the subjective unexpectedness of pattern measurements, the OCM sys-
tem provides a user additional knowledge (in additional to what the user knows) more efficiently than
the OCM system that does not measure subjective unexpectedness.” To evaluate this hypothesis, we
developed a study design which serves as a protocol for testing our hypothesis. According to the study
design, the hypothesis can be repeatedly evaluated by new study instances in the future with respect
to any number of study participants. Based on the the study design, we conducted a study instance
whose result justified our hypothesis. The study design as well as the conducted study instance are
described in Chapter 5.

1.3 Outline

After a brief introduction of some basic notions, the pattern ranking mechanism of the OCM framework
and the main idea of modeling the model the subjective unexpectedness for patterns in the existing works
will be discussed in Chapter 2. The knowledge model is described in Chapter 3. In Chapter 4, we discuss
the algorithm that computes subjective unexpectedness for frequency measurements. The implementation
of the algorithm in OCM is also described in this chapter. In Chapter 5, we present how a user study is
designed and conducted for evaluating the effect of the knowledge model in OCM. The future works are
listed in Chapter 6.
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Chapter 2

Preliminary

This chapter introduces the basic notions and concepts used in this thesis. Particularly, it introduces the
pattern recommendation mechanism in the OCM system and motivates the requirement of measuring sub-
jective unexpectedness. The main idea of modeling the subjective unexpectedness for patterns according to
De Bie [2009] is also recapped in this chapter.

2.1 Notations

Denote data space D as a set of all possible datasets. A dataset D ∈ D consists a set of data records r ∈ R.
Each data record is described by a fixed attribute set A, where each attribute a ∈ A maps the record to a
value domain Va, i.e., a : R→ Va. In this thesis we only focus on to categorical dataset, i.e., |Va| is finite and
its values are incomparable. Given an attribute set A = {a1, . . . , a|A|}, each data record r ∈ R corresponds

to a value vector vr =
(
a1(r), . . . , a|A|(r)

)
. The value space of value vectors is denoted as V = a∈AVa.

For each data record r in a dataset D, a proposition o is a binary statement which holds either true or
false about the record, i.e., o : V → {0, 1}. Given a proposition set O, a pattern language L consists of
logic combinations of the propositions from the set. For instance, the OCM framework produces association
patterns (e.g. fig.2.1a) and subgroup patterns (e.g. fig.2.1b), for the association patterns we have pattern
language consists of conjunctions of the propositions, i.e., Lcnj; and for the subgroup patterns, the pattern
language consists of conjunctions of propositions combined with the index set of the target attributes, i.e.,
Lsgd = Lcnj × [n]. For each element s in a pattern language L is referred to as a pattern descriptor. An
association pattern descriptor sass ∈ Lcnj has form sass = (o1 ∧ . . . ∧ ok), while a subgroup descriptor
ssgd ∈ Lsgd is defined as ssgd = (o1∧ . . .∧ok, t) where t ∈ [n]. Denote F as a set of predefined interestingness
measure functions. That is, given a dataset, an interestingness measure f ∈ F maps a pattern described by
s into a real value, i.e., f : L × Ω→ R. For example,

• The frequency measure for the association pattern is defined as:

ffreq(sxass
, D) =

|support(sxass
, D)|

|RD|
, (2.1.1)

where support(sxass
, D) is the set of rows in dataset D that their values satisfy the descriptor sxass

of
pattern xass.

• The lift measure [Boley et al., 2013] computes the difference between the frequency of an associ-
ation pattern and its expected frequency according to the assumption that all propositions within the
descriptor are mutually independent, i.e,

flft(sass, D) =
(
ffreq(sass, D)−

∏
o∈Os

ffreq(so, D)
)
/2|Os|−2 (2.1.2)
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where Os is the set of propositions that present in descriptor sxass
, and so denotes a descriptor that

contains only one proposition o.

• The subgroup measure fsgd(sxsgd
, D) ([Boley et al., 2013]) of a subgroup pattern xsgd is defined as the

multiplication of frequency f(sxsgd
, D) and target deviation measure fdev(sxsgd

, D), i.e.,

fsgd(sxsgd
, D) = ffreq(sxsgd

, D)fdev(sxsgd
, D) (2.1.3)

where fdev(sxsgd
, D) is defined as the distance between the distribution of target attribute at in the

dataset extension described by sxsgd
and in the whole dataset.

Corresponding to a measure f , a measurement m with respect to descriptor s and data D is defined as a
pair m = (f, α), where α ∈ R, f(s,D) = α.

A pattern p is a pair (s,M) ∈ L × 2F×R, where the measurement set M is associated with F ⊆ F ,
a set of applicable interestingness measure according to the pattern type. For example, to evaluate the
interestingness of the association patterns in OCM, frequency measure and lift measure are used, hence the
association pattern in (Figure 2.1a) has a frequency measurement ffreq = 0.4442 and a lift measurement
flft = 0.1308. For subgroup patterns, besides the subgroup measure, the frequency measure is also applied.
As a concrete example, the subgroup pattern in (Figure 2.1b) has a subgroup interestingness measurement
fsgd = 0.2569 and also a frequency measurement ffreq = 0.4636. For different pattern types, the measure set
F varies. A pattern p = (s,M) is said to occur in the data D if for every (f, α) ∈M we have f(s,D) = α.

(a) Association pattern with measures: frequency
and lift

(b) Subgroup pattern with measure: frequency
and target deviation

Figure 2.1: Patterns that are discovered via OCM

2.2 Pattern Ranking Mechanism in OCM

In order to recommend the patterns that might be interesting to a user, patterns discovered in OCM are
ranked according to the modeled user preference. This is achieved in three steps. First, a pattern x is
characterized by a predefined set of features Φ. There are two types of features in OCM, a real valued feature
ϕf (x) ∈ R is induced by a pattern measure, i.e., ϕf (x) = f(x); a binary feature ϕo(x) ∈ B indicates whether
a particular proposition o is contained in the descriptor of pattern x. Denote F as the linear feature space
induced by the feature set Φ, each pattern has its corresponding feature vector ϕ(x) = (ϕ1(x), . . . ϕ|Φ|(x)),
where ϕ(x) ∈ F. Second, defined on the feature representation of the patterns, a user preference model
u : F→ R is maintained in the OCM framework. For each pattern x = (s,M) that is produced in OCM, the
pattern utility u(ϕ(x)) serves as an indicator of the user preference of this pattern. Third, given the feature
space and the user preference model, the ranking of a newly discovered patterns set Q can be increasingly
constructed: greedily add into the ranking with the pattern which has the largest minimum weighted cosine
distance to the patterns within the ranking in the feature space, formally:

r′ = r ∪ x,where x = argmax
x∈Q

min
p′∈r

u(ϕ(x)) · distcos(x, p
′) (2.2.1)
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Since both the cosine distance and the pattern utility are bonded with the feature representations of the
patterns, the current ranking mechanism selects the pattern with descriptors and measures that are the most
syntactically dissimilar to the ranked patterns, it maintains the syntactical diversity of a ranking. However,
because for different users, their semantic knowledge about even the same dataset vary, by maintaining merely
the syntactic diversity in a ranking can not guarantee to present different users always new knowledge in
addition to their background knowledge. We define semantic diversity as the quantity that indicates the
amount of new knowledge in a ranking with respect to a user’s current knowledge state. The following cases
show that the semantic diversity is more powerful than the syntactic diversity, and can be used to distinguish
more complex relationships among the patterns, while the later one fails to tell:

• For a new pattern that is syntactically redundant, it also conveys no new semantic knowledge. For
example, the new pattern that is exactly as the same as one of the previously studied pattern.

• A pattern that is complementary to the user already learned patterns, is syntactically new but se-
mantically redundant. For instance, in the German social-economical dataset which we compiled from
the database provided by the German Federal Office of Statistic1, an association pattern with descriptor
(area = rural ∧ tractor number = high) is complementary to the pattern described by (area =
urban ∧ tractor number = low), hence these two patterns have different syntaxes. But these
two patterns describe the same information in from two logic perspective, hence they are semantically
redundant.

• New pattern with descriptor that is covered by as set of patterns known by user, but is not exactly
the same as any previous one. In this case, the new pattern has certain syntactic diversity but the
new semantic knowledge contained in the pattern varies: a. the new pattern can be derived from the
previous pattern, hence is not interesting, e.g., the pattern with descriptor (area = rural ∧ tractor
number = high) can be concluded by the prior knowledge (tractor number = high ∧ agriculture
workforce rate = high) and (area = rural ∧ agriculture workforce rate = high); b. the new
pattern reveals additional information upon the studied patterns. For example, given patterns with
descriptors (area = rural ∧ high school degree holder rate = low) and (tractor number =
high ∧ crime rate = low) that have been studied by user, the next pattern with descriptor (area
= rural ∧ tractor number = high) is syntactically covered by previous two patterns, but it tells
the knowledge that can not be directly inferred from the previous ones.

The subjective unexpectedness measures the amount of the new information conveyed by the patterns
according to the user, therefore it can be used as semantic diversity indicator when constructing the pattern
ranking.

2.3 Subjective Unexpectedness for Patterns

To measure subjective unexpectedness of patterns that are discovered in a dataset, one need to first to
model users’ current knowledge about the dataset, i.e., background knowledge, denoted as B. According
to De Bie [2011], a user’s knowledge about a dataset can be represented by a background distribution over
the data space PB : D → [0, 1]. That is, the users belief state of how every dataset D ∈ D is likely to be
the dataset that she is currently working on. As the knowledge about a dataset is essentially conveyed by
pattern measurements, the background distribution PB of a user is therefore characterized by the pattern
measurements that has been observed by the user. That is, these observed measurements pose a set C of
constraints on the possible background distributions over the data space [De Bie, 2009, Kontonasios et al.,
2013].

However, as the constraint set does not uniquely determine the background knowledge in general, it
results in a constrained family of distributions PC , formally:

PC = {P : D→ [0, 1] | ∀c ∈ C, c(P ) = 1} (2.3.1)

1www.regionalstatistik.de
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In order to represent the user’s belief state as a unique background distribution, the maximum entropy
principle (MaxEnt) is applied to retrieve the distribution with maximum entropy from the family PC [De
Bie, 2009]. By applying this principle, we obtain the background distribution associated with user’s current
background knowledge B, i.e.

PB = argmax
P∈PC

− ED∼P log(P (D)) (2.3.2)

The reason of applying the maximum entropy is that a distribution with lower entropy injects additional
assumptions and hence is biased in undue ways. Therefore, the distribution with maximum entropy is the
best choice at hand.

With the retrieved background distribution, the user’s belief of the appearance of pattern x in dataset
D is defined as the probability:

PB(x) =
∑
D∈Dx

P (D) (2.3.3)

where Dx is the set of datasets that contain pattern x.
Finally, the subjective unexpectedness of a pattern x is defined by trading off the information content

of the pattern (i.e., − log(PB(x))) and the pattern’s descriptional complexity, i.e., the information ratio of a
pattern([De Bie, 2013]):

InfoRatio(x) =
InformationContent(x)

DescriptionalComplexity(x)
. (2.3.4)

intuitively, with fixed descriptional complexity, if a pattern has a small appearance probability according
to a user’s belief state, then this pattern has a large information content, which indicates the information
ratio of this pattern is also large. Hence the information ratio gives a reasonable indication of the subjective
unexpectedness of a pattern.

In this thesis, in order to further quantify subjective unexpectedness for pattern measurements, we need
to extend the model described above. This extended model is described in the next chapter.
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Chapter 3

Subjective Unexpectedness of Pattern
Measurements

This chapter describes a model that computes subjective unexpectedness for pattern measurements. First
we give a detailed derivation of the approach proposed by De Bie [2013] that approximates user background
knowledge and compute subjective unexpectedness for patterns. Then we extend this approach in order to
compute subjective unexpectedness for pattern measurements. This extended approach is also referred to
as the knowledge model, which is summarized as an algorithm in this chapter. Theoretically, the subjective
unexpectedness of any types of pattern measurements (with form defined in 2.1) can be computed by the
knowledge model. In practice, such computation can be very expensive. However, a better computational
efficiency can be achieved for frequency measurements in particular. The knowledge model for frequency
measurements is discussed in the end of this chapter.

3.1 Constraints Induced by Measurements

As previously discussed in section 2.3, to model a user’s knowledge about the dataset that she is currently
working on, one way is to represent user’s knowledge as a background distribution PB over data space D.
Such background distribution is characterized by a set of linear constraints converted from the observed
measurements [De Bie, 2009]. Formally, for a pattern x in a given dataset Dobs, a pattern measurement
mx = f(sx, Dobs) induces a linear constraint:

ED∼P,D[f(sx, D)] = f(sx, Dobs)
1. (3.1.1)

. Intuitively, once a user studied a measurement f(sx, Dobs), the knowledge contained in the measurement is
also conveyed to her, hence the future appearances of this measurement in dataset Dobs become expectable
to the user. More importantly, this learning behavior changes the user beliefs about the datasets that might
contain pattern x and have the same measurement f(sx, Dobs). Thus, within those datasets, the user’s beliefs
about the appearances of other patterns (especially the ones that are correlated with x) will also change.
Relating this intuition back to our model, constraints in form (3.1.1) asserts that a feasible background
distribution should give in expectation the same values as the studied pattern measurements. Such distri-
bution also assigns higher beliefs to the datasets that are more likely to give the observed measurements.
As a consequence, the (non-revealed) measurements of those datasets also receive higher beliefs. Hence, the
background distribution “learns” some knowledge conveyed by the constraints.

In general, a background distribution is characterized by a set of constraints. We denote the set of all
possible distributions over data space D as P, where each distribution P ∈ P is a mapping P : D → R.

1Although data space D can be either discrete or continuous, in this thesis we only consider discrete data space. Hence
computing the expectation of certain measure f(·) under distribution P is done by summing “

∑
” over data space D. When

dealing with continuous data spaces, one need to replace the summation by integration “
∫
”

9



Given a pattern set Xobs that has been studied by a user, a set of constraints C in the form of (3.1.1) are
induced by the corresponding pattern measurements Mobs. Then, the distribution set PC ⊆ P is referred to
as the set of feasible distributions that satisfy all constraints in C. However, as a user only have one belief
state at a moment, the subjective unexpectedness of a measurement also needs to be computed against a
unique background distribution. That means, we need to further retrieve exactly one distribution out of the
constrained set PC according to certain object, i.e., distribution with the maximum entropy.

3.2 Maximum Entropy Model

To obtain a unique background distribution from a constrained distribution set PC , we follow the idea
proposed by De Bie [2009] to search for the distribution function with the maximum entropy in PC . Then
our problem can be transformed into an optimization problem whose objective function is entropy function
−ED∼P,D[logP (D)] subject to the constraint set C. In this section we first formalize this optimization
problem, and then discuss how to solve it by applying the Lagrange method. We show that our optimization
problem fulfills the so-called strong duality property, which guarantees that the global optimum can always
be found via the Lagrange method.

We formalize the optimization problem that maximizes the entropy (the MaxEnt problem) of a distribu-
tion function P ∈ P subject to a constraint set C as follow:

max
P∈P

g0 = −ED∼P,D[logP (D)] (3.2.1)

s.t. gc(P (·)) = ED∼P,D[fc(sxc
, D)]− fc(sxc

, Dobs) = 0, (∀c ∈ C), (3.2.2)

h(P (·)) =
∑
D∈D

P (D)− 1 = 0. (3.2.3)

The above problem is a concave optimization problem with a convex domain P and convex constraint func-
tions (see Appendix A.1). It has a global optimal solution (denoted as P ∗B) that maximize the objective
function (3.2.1). According to [Boyd and Vandenberghe, 2004], to solve a concave optimization problem, we
can first transform it into a convex optimization problem which has the same constraints but minimizes the
negative objective function. Then by solving the transformed convex problem, we obtain an optimal solution
that also maximizes the original concave problem.

By transforming the MaxEnt problem, we obtain the following optimization problem:

min
P∈P

g′0 = −g0 = ED∼P,D[logP (D)], (3.2.4)

subject to the same constraints (3.2.2) and (3.2.3). Since the objective function g0 of the MaxEnt problem
is concave on domain P, hence its negative g′0 = −g0 is convex on the same domain. And as stated before
the constraints (3.2.2) and (3.2.3) are also convex, our transformed optimization problem is indeed a convex
problem. It has a global minimum solution that simultaneously solves our MaxEnt problem (3.2.1 - 3.2.3).
Hence this minimum solution also can be denoted as P ∗B.

To solve the convex optimization problem, we opt to use the Lagrange method. We form a Lagrangian
L : P × R|C| × R → R by augmenting the convex objective function (3.2.4) with a weighted sum of the
constraint functions (3.2.2) and (3.2.3):

L(P (·),λ, µ) = g′0(P (·)) +
∑
c∈C

λcgc(P (·)) + µh(P (·)) (3.2.5)

where λ is a vector of Lagrange multipliers, and each vector component λc is associated with a constraint c
of form (3.2.2), µ is the multiplier associated with constraint (3.2.3). Based on the Lagrangian (3.2.5), the
convex problem (3.2.4) can be equivalently expressed (see A.2) by the primal optimization problem:

min
P (·)

[
max
λ,µ

L(P (·),λ, µ)
]

(3.2.6)
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Because of the equivalence, the optimal solution of the primal problem is also the solution of the convex
problem (3.2.4), i.e., P ∗B. We denote the optimal value of the objective function in above primal problem as
p∗.

Solving the primal problem requires to first maximize the Lagrangian with respect to the multipliers and
then minimize the resulting maximum with respect to the distribution function. The maximization of the
Lagrangian results in two cases:

max
λ,µ

L(P (·),λ, µ) = g′0(P (·)) +

{
0 if P (·) is feasible, ∀λ, µ
∞ if P (·) is infeasible, ∃|λi| =∞ or |µ| =∞

Hence, in order to minimize (w.r.t. P (·)) a non-trivial resulting maximum, one need to search in a set of
distributions that satisfy constraints (3.2.2) and (3.2.3), i.e., PC . However, since it is hard to constructively
define the feasible distribution set PC , directly solving the primal problem becomes impractical. Fortunately,
we can still solve our convex optimization problem by solving the corresponding dual problem. The dual
problem associated with the Lagrangian (3.2.5) reads:

max
λ,µ

[
min
P (·)

L(P (·),λ, µ)
]
. (3.2.7)

As we only have equality constraints for the convex objective (3.2.4), according to Boyd and Vandenberghe
[2004, p. 216], in the above dual problem there are no constraints on the multipliers λ and µ. This means we
can search the optimal value of the multipliers within their domain (R|C| and R respectively) to maximize
the resulting minimum. Note the above dual problem is concave in terms of the Lagrange multipliers λ
and µ (see A.3), hence it has a global maximum. We denote the optimal objective function value in above
dual problem as d∗. Since our transformed optimization problem (3.2.4) is convex, and it does not contain
any inequality constraint, hence for this problem the strong duality holds [Boyd and Vandenberghe, 2004].
The strong duality states the optimal values of the primal problem and the corresponding dual problem are
equal, i.e.,

p∗ = g′0(P ∗B(·)) = d∗ (3.2.8)

This allow us to find the optimum of the original convex optimization problem (3.2.4) by solving the dual
problem (3.2.7).

To solve the dual problem, first notice that the Lagrangian (3.2.5) is a convex functional with respect to
distribution function P (·) (see A.4). Hence by equating the derivative of L(P (·),λ, µ) with respect to P (·)
to zero, we obtain the distribution function that maximizes the Lagrangian (see A.5):

P (·) = exp
(∑
c∈C

λcfc(sxc
, ·) + µ− 1

)
=

1

1− µ
exp

(∑
c∈C

λcfc(sxc , ·)
)

=
1

Z
exp

(∑
c∈C

λcfc(sxc
, ·)
)
.

(3.2.9)

According to the constraint (3.2.3), a feasible background distributions P (·) is normalized over the data
space, so the factor Z in (3.2.9) is essentially a partition function with form:

Z(λ) =
∑
D∈D

exp
(∑
c∈C

λcfc(sxc , D)
)
. (3.2.10)

Now the distribution function (3.2.9) maximizing the Lagrangian is parametrized only by the Lagrange
multipliers λ. Subject the distribution function with partition function (3.2.10) back to the dual problem
(3.2.7), we obtain (see derivation in Appendix A.6):

max
λ

d(λ) = − log(Z(λ)) +
∑
c∈C

λcfc(sxc , Dobs). (3.2.11)
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As the objective function d(λ) is smooth and concave with respect to λ (see A.7), the above problem is
a unconstrained concave optimization problem. It has a global optimum solution which can be obtained
by applying standard numerical techniques, e.g., Gradient Descent Method [Boyd and Vandenberghe, 2004,
p. 466]. We denote this optimal solution as λ∗.

Finally, we obtain the solution P ∗B of the MaxEnt optimization problem (3.2.1 - 3.2.3) by subjecting the
solved multipliers λ∗ back to (3.2.12). That says, the distribution P ∗B is the feasible background distribution
with maximum entropy over data space D:

P ∗B(·) =
exp

(∑
c∈C

λ∗cfc(sxc
, ·)
)∑

D∈D exp
(∑

c∈C λ
∗
cfc(sxc

, D)
) (3.2.12)

3.3 Computing Subjective Unexpectedness of Pattern Measure-
ments

Since the knowledge of a dataset is essentially conveyed by pattern measurements to a user, it is necessary to
quantify the user’s subjective unexpectedness with respect to pattern measurements. As there is no previous
work has been done in modeling the subjective unexpectedness for pattern measurements, we need to extend
the model described in the previous section. In this thesis, we define the subjective unexpectedness of a
user observed measurement mobs as the difference between the user’s expected measurement m̂ and the
observed measurement mobs. With the retrieved background distribution P ∗B, the user’s expected frequency
measurement m̂ of the pattern measure fx can be defined as follow:

m̂fx = ED∼P∗B,D[fx(sx, D)]

=

∑
D∈D exp

(∑
c∈C λcfc(sxc

, D)
)
· fx(sx, D)∑

D∈D exp
(∑

c∈C λcfc(sxcD)
) (3.3.1)

There are three ways to quantify the difference between a observed measurement mobs and the corres-
ponding expected measurement m̂:

Absolute Difference: |m̂−mobs| (3.3.2)

Absolute Ratio: 1−min
( m̂

mobs
,
mobs

m̂

)
(3.3.3)

Double Tail p-Value: 2 min
(
Pr(X ≥ mobs|H = m̂), P r(X ≤ mobs|H = m̂)

)
. (3.3.4)

In the thesis, we choose the absolute ratio (3.3.3) to quantify the unexpectedness. Because the absolute
difference (3.3.2) is too conservative when the scale of the compared values is small. For example, an
association pattern x with observed frequency 0.5 and expected frequency 0.6, another pattern with observed
frequency 0.05 and expected frequency 0.06, using the absolute difference, the unexpectedness of the second
measurement is smaller than the first pattern’s. This case can happen when the second pattern has more
complex descriptor, hence the scale of its frequency is small in nature. In other words, when measure
the unexpectedness based on frequency measurement, the absolute difference introduces preference to the
patterns with simpler descriptors. On the other hand, the absolute ratio doesn’t have this issue. For both
patterns, the absolute ratio as unexpectedness are the same: 0.833.

We ruled out the p-Value because it is computationally expensive. Conceptually, by treating the expected
measurement as the null hypothesis, then the p-Value gives the probability that a random measure under
the background distribution will be smaller(larger) than the observed measurement. Hence it indicates
the difference of mobs and m̂. However, since for the background distribution in for (3.2.12), it is unclear
whether there exists a closed form solution for computing the corresponding p-value. Calculating the p-value
by definition requires to accumulate the probability by enumeration over space D, which introduces to much
overhead.
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Formally, the subjective unexpectedness of a measurement is defined as:

SubUnexp(mobs) = 1−min
( m̂

mobs
,
mobs

m̂

)
. (3.3.5)

for the special case that mobs = 0, we define SubUnexp(mobs) = 0.
As our approach of computing subjective unexpectedness for pattern measurements involves modeling

the user’s current knowledge about the underlying working dataset, we refer to it as the knowledge model.
The knowledge model takes the users learned pattern measurements as inputs, and computes subjective
unexpectednesses of the new pattern measurements as outputs. There subjective unexpectedness, as de-
manded, can serve as the indicators of how much new knowledge contained in the corresponding pattern
measurements in additional to a user’s current knowledge about the underlying data. Moreover, according
to the definition of pattern measurements in (section 2.1), any measure function f that maps a pattern x
and corresponding dataset D to a real value is compatible with the knowledge model. For example, theor-
etically we can compute subjective unexpectedness for the measurements defined in (section 2.1), i.e., the
lift measurement flft(sxass

, Dobs) and the frequency measurement ffreq(sxass
, Dobs) of an association pattern

xass and the subgroup interestingness fsgd(sxsgd
, Dobs) of a subgroup pattern xsgd.

We summarize the knowledge model in (Algorithm 1). Notice that to update the knowledge model, one
needs to solve the dual problem (3.2.11). This requires to compute the partition function Z(λ) by summing
over the data space with cardinality exponential in |R|, i.e., |D| = |V|R||. Such summation also appears
when computing the user’s expected measurement (3.3.1). This makes the exact computation of subjective
unexpectedness in knowledge model impractical. In the next section, we show that such complexity can be
reduced exponentially for a specific type of pattern measurements.

3.4 Computing Subjective Unexpectedness of Frequency Meas-
urements

In this section, we show that the computational complexity of the knowledge model is can be reduced
exponentially with respect to frequency measurements.

A user observed frequency measurement ffreq(sx, Dobs) can be readily converted into constraint with form
(3.1.1) by plugging in the definition of the frequency measure (2.1.1):

ED∼P∗B [ffreq(sx, D)] = ffreq(sx, Dobs)

=
|support(sx, Dobs)|

|R|
(3.4.1)

Based on the definition of frequency constraint (3.4.1), the background distribution can be computed
and represented more explicitly. First, we obtain the partition function by substituting the expression of
frequency constraint (3.4.1) into (3.2.10):

Z(λ) =
∑
D∈D

exp
(∑
c∈C

λcffreq(sxc
, D)

)
(3.4.2)

=
∑
D∈D

exp
(∑
c∈C

∑
r∈RD

sxc
(vr)

|RD|

)
(3.4.3)

=
∑
D∈D

∏
r∈RD

exp
(∑
c∈C

λc
sxc

(vr)

|R|

)
(3.4.4)

=
∏
r∈R

∑
rD∈D

exp
(∑
c∈C

λc
sxc(vr)

|R|

)
(3.4.5)

=
∏
r∈R

∑
v∈V

exp
(∑
c∈C

λc
sxc

(v)

|R|

)
. (3.4.6)
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Algorithm 1 Knowledge Model

Update the Knowledge Model:

Require: User observed pattern measurements fc(sxc
, Dobs), c ∈ C, current dataset Dobs, attribute set A,

number of rows in a dataset |R|.
1: Initialize Lagrange multipliers, i.e., λc = 0, ∀c ∈ C.
2: Compute the gradient of the dual function d(λ) in (3.2.11):

∂d(λ)

∂λc
= −

∑
D∈D

exp
(∑

c′∈C λ
′
cf
′
c(sx′c , D)

)
· fc(sxc , D)∑

D∈D exp
(∑

c′∈C λ
′
cf
′
c(sx′c , D)

) + fc(sxc , Dobs)

.
3: Update:

λc ← λc −∆t · ∂d(λ)

∂λc

where ∆t is a step length determined by line search algorithm (see [Boyd and Vandenberghe, 2004,
p. 464]) to decrease the value of the dual function.

4: If the gradient’s norm ‖∇d(λ)‖ is small enough, go to step 5, otherwise go to step 2.
5: return The computed multipliers λ′.

Compute Subjective Unexpectedness of Pattern Measurements:

Require: a new pattern measurement mfx′ = f(sx′ , Dobs), updated Lagrange multipliers λ′, current dataset
Dobs, attribute set A, number of rows in a dataset |R|.

1: Compute the expected pattern measurement:

m̂fx′ =

∑
D∈D exp

(∑
c∈C λ

′
cfc(sxc , D)

)
· fx′(sx′ , D)∑

D∈D exp
(∑

c∈C λ
′
cfc(sxc

D)
)

.
2: Compute subjective unexpectedness for pattern measurement mfx′ :

SubUnexp(mfx′ ) = 1−min
(m̂fx′

mfx′
,
mfx′

m̂fx′

)
3: return SubUnexp(mfx′ )

where sxc
is the descriptor within the measure fc with respect to the constraint c. The equation (3.4.5)

is based on the assumption that the data records are mutually independent. Observe that from equation
(3.4.4) to equation (3.4.6), the domain of the partition function (sample space of the distribution) has been
transformed from the dataset space D = V|R| to the value space V. This reduces the computation complexity
exponentially in |R|.

Furthermore, reformulate the Lagrange dual problem based on the frequency constraints by plugging
(3.4.6) and (3.4.1) into (3.2.7), :

max
λ

d(λ) = − log(Z(λ)) +
∑
c∈C

λcffreq(scx , Dobs)

= −|R| · log(
∑
v∈V

exp
( 1

|R|
·
∑
c∈C

λcsxc
(v)
)

+
1

|R|
·
∑
c∈C

λc|support(scx , Dobs)|
(3.4.7)

By solving the problem (3.4.7), we obtain the optimal multipliers λ∗. So, the optimal background distribution
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P ∗B : V→ [0, 1] over the value space V reads:

P ∗B(V ) =
1

Z(λ∗)
exp

(∑
c∈C

λ∗csxc(V )
)

=
exp

(∑
c∈C λ

∗
csxc

(V )
)

∑
v∈V exp

(∑
c∈C λ

∗
csxc

(v)
) (3.4.8)

where V is the random variable that takes value from V.
With the background distribution P ∗B, the expected frequency measurement m̂freq(sx, D) for a pattern x

has form:
m̂freq(sx, D)EV∼PB,V[ffreq(sx, D)]

= EV∼PB,V[sx(V ) = 1]

=

∑
v∈V exp

(∑
c∈C λcsxc(v)

)
· sx(v)∑

v∈V exp
(∑

c∈C λ
∗
csxc

(v)
) (3.4.9)

In appendix (A.8), we give an concrete example which illustrates how to update the knowledge model
and compute subjective unexpectedness of frequency measurements based on a toy dataset.
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Chapter 4

An Efficient Implementation of
Knowledge Model

As the computational complexity of the the knowledge model (section 3.3) is exponential in input dataset
size, computing subjective unexpectedness for arbitrary pattern measurements is inefficient. Currently we
only implemented the the knowledge model that efficiently computes exact subjective unexpectedness for
frequency measurements on categorical dataset. As the partition function (3.2.10) is the most expensive part
in the knowledge model computation, in this chapter, we describe an algorithm applied in our implementation
that efficiently computes the partition function. This chapter also discusses how the knowledge model is
applied in the OCM system.

4.1 Computing the Partition Function Z(λ)

The computation of subjective interestingness involves in calculating the partition function Z(λ) (within dual
function (3.2.11) and the expected measurement (3.3.1) ). Since only frequency constraints are considered
in the current knowledge model implementation, we can rewrite the partition function (3.2.10) as:

Z(λ) =
(∑
v∈V

exp
( 1

|R|
∑
c∈C

λcsxc
(v)
))|R|

. (4.1.1)

Notice the argument ( 1
R

∑
c λcsxc

(v)) of the exponential function is the sum of the multipliers that correspond
to the constraints satisfied by value v. Hence a naive way of computing the partition function is to enumerate
through the value space V and collect for each value v the exponential expression of the corresponding satisfied
constraints, i.e., {c|c ∈ C ∧ sv(c) = 1}. However, as the value space V = a∈AVa is a Cartesian product of
all attribute value domains, its cardinality is exponential in the number of attributes |A|, i.e., O(k|A|) where
k = maxa∈A |Va|. In OCM, a working dataset can be large, the exponential complexity of the knowledge
leads to an inefficient subjective unexpectedness computation, hence a better implementation of computing
the partition function is required.

The efficiency of the partition function computation can be improved by applying the idea of loop
inversion. First for the inner summation (over constraint set C) in the expression (4.1.1), generate all
length |C| conjunctions (with negation) of constraints c ∈ C, denoted as C. For example for constraint
set C = {c1, c2}, the set of constraint conjunctions reads C = {c1 ∧ c2, c1 ∧ c2, c1 ∧ c2, c1 ∧ c2}. Note that
different conjunctions conj ∈ C are associated with different inner sums (i.e.,

∑
c∈C+

conj
λcsc(v)), where C+

conj

denotes the set of non-negated constraints in conj, e.g, for conjunction conj = c1 ∧ c2, the corresponding
set C+

conj = {c2}. Then, to carry out the outer summation (over the value space V), for each constraint
conjunction conj, compute the number of satisfying values v (i.e., |{v|conj(v) = ∧c∈conjc(v) = 1}|) in the
value space V, denoted as |Vconj |. Finally, the partition function computation is computed by summing over
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all conjunctions conj ∈ C with value |Vconj | exp( 1
|R| ·

∑
c∈C+

conj
λc), i.e., the product of previously computed

satisfying value number |Vconj | and the exponential of the corresponding inner sum
∑
c∈C+

conj
λc.

The calculation of the inner summation described above is straight forward. Now we describe in more
detail how to compute the number |Vconj | of the values satisfying constraint conjunction conj. First for
all conjunction conj ∈ C compute the number of satisfying values |Vconj+ | of corresponding non-negated
constraint conjunction conj+ = ∧c∈C+

conj
c. We achieve this by first computing for each attribute domain Va

the number of satisfactory values, and then multiply them together, i.e., |Vconj+ | =
∏
a∈A |{va|va ∈ Va ∧

conj+(va) = 1}|. This step has complexity in O(|A| · |C| · 2|C|). In the second step, the number of satisfying
values |Vconj | is computed by applying the inclusion and exclusion principle proposed by Smith and Gogate
[2013]. Notice that the set C essentially poses a partition on value space V. As an example illustrated in (4.1a),
a constraint set C = {c1, c2} has the corresponding conjunction set C = {c1 ∧ c2, c1 ∧ c2, c1 ∧ c2, c1 ∧ c2},
which partitions the value space into four disjoint sets. Given a constraint with negation conj ∈ C, let
Cconj− be a set of negated constraints in conj, and denote the power set of constraint conjunctions over

Cconj− (including empty conjunction) as 2Cconj− , then the cardinality of satisfactory value set (|Vconj |) of
conjunction conj is computed as follow:

|Vconj | =
∑

l∈2
C
conj−

(−1)|l||Vconj+∧l| (4.1.2)

where conj+ ∧ l is a conjunction of non-negated constraints, hence quantity |Vconj+∧l| is already computed
in step one. To illustrate the computation using rule (4.1.2), consider example in (4.1b). The cardinality
associated with conjunction c1 ∧ c2 can be computed by first adding (inclusion) cardinality of c2 with
value |Vc2 | = 4 and then subtracting (exclusion) the cardinality of c1 ∧ c2 with value |Vc1∧c2 | = 3, i.e.,
|Vc1∧c2 | = |Vc2 |−|Vc1∧c2 | = 1. The complexity of the second step depends only on the number of constraints,
hence it is O(22|C|).

Combine the analysis together, the two step computation of the partition function has time complexity
of O(|A| · |C| · 2|C|) + O(22|C|), which is essentially in O(22|C|). It is exponential in number of constraint
|C|, which is also the number of association patterns that a user studied. Compare to the naive method
with complexity O(k|A|) proposed at the beginning of this section, our two step computation of the partition
function is more efficient when the number of patterns studied by a user is small.

c1 c2

V

c1 ∧ c2 c1 ∧ c2
c1 ∧ c2

c1 ∧ c2

(a) Constraint combination set PC poses a
partition on value space V

c1 c2

V

c1 ∧ c2 c1 ∧ c2
c1 ∧ c2

c1 ∧ c2

(b) Constraint combinations with associated
satisfying values (black dots).

We summarize the algorithm of computing the partition function in (Algorithm. 2).

4.2 Applying the Knowlege Model in OCM

We implemented the knowledge model for frequency measurements in the OCM system. This section dis-
cusses two main considerations involved in the implementation: a. how to carry out the knowledge model
computation in OCM. b. where to use the computed subjective unexpectedness.
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Algorithm 2 Partition Function Computation

Require: Lagrange multipliers λ, constraint set C, attribute set A, number of rows in a dataset |R|.
1: generate all length |C| conjunctions of constraints c ∈ C with negation, denotes as C:
2: for all conj ∈ C do
3: compute the number of values v ∈ V satisfying conj+ = ∧c∈C+

conj
c:

|Vconj+ | =
∏
a∈A
|{v|v ∈ Va ∧ conj+(v) = 1}|

4: for all conj ∈ C do
5: compute the number of values v ∈ V satisfy conj ∈ C

|Vconj | =
∑

l∈2
C
conj−

(−1)|l||Vconj+∧l|

6: compute the partition function:

Z(λ) =
( ∑
conj∈C

|Vconj | · exp
( 1

|R|
∑

c∈C+
conj

λc

))|R|
7: return Z(λ)

4.2.1 Computing Subjective Unexpectedness

The OCM system is operated based on discovery processes. A discovery process consists of three phases.
First, the system operates the mining algorithms to discover new patterns and then rank these patterns
according to the inferred user preference model. The ranked patterns are presented to users at the end of
this phase. Second, while the user is analyzing the patterns (i.e., save interesting ones, delete non-interesting
ones), OCM translates the user’s actions into her feedback. Third, when the user is done analyzing, the
user preference model is updated according to the collected feedback. This updated model is again used to
rank the new discovered patterns in the next process. To incorporate the knowledge model into a discovery
process, two discovery process phases are modified.

First, compute the subjective unexpectedness in the first phase. In the first phase, new patterns are
discovered by the mining algorithms. Hence, the knowledge model needs to compute the subjective unexpec-
tedness for the patterns. As in current implementation of the knowledge model only the frequency measure
is considered, we define the subjective unexpectedness of a pattern as the subjective unexpectedness of the
pattern’s frequency measurement.

Second, update the knowledge model in the third phase. When the user is done with analyzing the result
raking, it also indicates that user has studied the patterns the she just saved. The knowledge conveyed by
the saved patterns becomes a part of the user’s background knowledge, hence the constraint set C as well as
the background distribution PB has to be updated to incorporate the knowledge of conveyed by the pattern
measurements within the saved patterns.

4.2.2 Using Subjective Unexpectedness

Our first idea of applying subjective interestingness in OCM is to introduce it as a new feature ϕSubUnexp into
the feature space F (see 2.2). In this way, the subjective interestingness of a pattern x will be incorporated
into the pattern’s utility u(ϕ(x)), and automatically used in the ranking mechanism. In this setting, however,
when the background distribution is updated, the subjective unexpectedness feature values of the previously
studied patterns also will change. As the user learns more about the data, the unexpectedness of these
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patterns will decrease to zero, hence the utility model will be biased to prefer the pattern with small
subjective unexpectedness. This is obviously not a desired behavior.

Our second thought is to use the pattern subjective unexpectednesses explicitly in the ranking mechanism,
trading off the pattern utilities. The OCM framework has already been using a subjective quantity for
ranking, that is, the pattern utility. A pattern’s utility indicates the user’s preference about this pattern,
hence it quantifies the pattern’s subjective relativeness to the user’s interests, denoted as SubRelate(x). By
trading off it with the subjective unexpectedness OCM would be able to provide a rank that not only relates
to but also conveys various new knowledge in addition to what a user already knows. Such trade off, namely
the subjective interestingness is defined as:

SubInterest(x) = θ · SubRelate(x) + (1− θ) · SubUnexp(x), (4.2.1)

where SubRelate(x) = u(ϕ(x)) and θ ∈ [0, 1] is the parameter that trades off the two subjective quantities.
With the new raking factor we can modify the ranking criteria (2.2.1) into:

r′ = r ∪ x,where x = argmax
x∈Q

min
x′∈r

(
SubInterest(x) · distcos(x, x

′)
)

(4.2.2)

Put together, the new discovery process has the following steps:

1. compute a ranking of the patterns based on the subjective interestingness.

2. when the user interaction phase finishes, interpret the new saved patterns into constraints and add
them into the constraint set C.

3. update user’s utility model, then update the knowledge model based on the updated constraint set C.

The effect of the implementation described in this section is evaluated by a user study, which is presented
in the next chapter.
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Chapter 5

User Study

The knowledge model aims to approximate a user’s knowledge gained from a dataset. For pattern measure-
ments with the form defined in section (2.1), the knowledge model can evaluate their subjective unexpec-
tednesses with respect to different users and datasets. The higher subjective unexpectedness a measurement
has, the more knowledge about the underlying dataset the measurement may convey to a user. Hence we
claim that, by applying the knowledge model, a data mining system should potentially be able to provide
its users informative mining results more efficiently. To support this claim, we applied the knowledge model
in an interactive data mining system (i.e., OCM) according to the discussion in section (4.2). Regarding to
this implementation, following hypothesis is proposed based on the previous claim:

The OCM system with the knowledge model can provide a user additional knowledge (in ad-
ditional to what she already knows) more efficiently than the system without the knowledge
model.

Generally, to evaluate the benefits of an algorithm or a model, the common practice of the data mining
community is performing intrinsic formal or empirical evaluations. That is, based on either implicit or
explicit assumptions of users, certain measure such as pattern utility or computation speed is used as an
evaluation indicator. Following this practice, for the implementation of knowledge model in OCM, one can
design an intrinsic evaluation by simulating various virtual users who interact with the system, then evaluate
the utilities of the results generated by OCM against each virtual user respectively. However, such simulation
is essentially an approximation based on simplified theoretical assumptions about a real-world user. It means
that the interacting behavior of a partially simulated user might not always be sensible in the context of the
real world situation, and from which only a partially informed evaluation result can be obtained.

Therefore, it is more reasonable to evaluate the benefits of the knowledge model holistically in the context
of real world situations which involves real users, i.e., the extrinsic evaluations such as anecdotal studies (e.g.,
Wang and Wang [2002], Ohsaki et al. [2007]) and lab studies (e.g., Ke et al. [2009], Li et al. [2012]). In this
chapter, we first discuss in (sec. 5.1) how our hypothesis is translated into a user study design. By running
new studies that are instantiated form the same design, the hypothesis can be repeatedly tested (repeatable)
against an arbitrary high number of participants without consuming valuable resources (scalable), such as the
time of supervision personnel. Then we describe how a user study instance is executed (section 5.2). During
the study execution time, we gather the measurements about the participants interacting with systems as well
as the data generated through human evaluators reviewing the results produced by the study participants,
Finally, by processing the gathered data during the study execution time, we conclude in section (5.3) that
our hypothesis is justified by the conducted user study.

5.1 Study Design

In order to test our hypothesis of the knowledge model, we operationalized the hypothesis by translating its
natural language description into the corresponding study design. A study design defines a procedure that
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consists of all necessary components for evaluating a hypothesis. Our hypothesis about the knowledge model
requires to compare two system variants based on the efficiency that each system provides its users the new
knowledge about a dataset. According to this interpretation, operationalizing the hypothesis requires to
specify the following four components:

1. system specifications correspond to the two systems for comparison mentioned in hypothesis. The
OCM system with the knowledge model is the target system that we want to evaluate; the OCM system
without knowledge model is the control system that serves as a baseline for the hypothesis testing.

2. task specifications represent the tasks that participants need to solve with certain system variant.
Against these tasks, one can measure the efficiency that participants discover new knowledge using
different system variants. Hence a task specification needs to address the following questions:how to
identify the knowledge that are new to participants, how to quantify the new knowledge learned by
participants as well as how to measure the “efficiency” of certain system.

3. assignment logic defines how the tasks are issued to the study participants in order to obtain required
measurements.

4. system performance metric defines a criteria based on which one can conclude that one system
provides users new knowledge “more” efficiently than another.

As the system specifications are straightforward, we discuss the rest components in detail in this section.

5.1.1 Task Specification

In the user study, participants are required to perform analysis tasks, which allows us to gather the data
that is later processed to assess our hypothesis. In general, human participants need to understand analysis
tasks and solve them by operating certain system variants. This requires to provide the systems the inputs
(i.e., datasets) that they can operate on and communicate the analysis tasks to participants via certain form
of instructions. In the study, the hypothesis is assessed based on evaluating the task results produced by
the participants. Hence the form of the analysis task results has to be clearly defined. With the defined
form of analysis task results, a participant will also know when she is done with an analysis task. Finally,
the analysis task results are evaluated by human evaluators according to certain predefined metrics. To
communicate the evaluation purpose as well as define the evaluation metrics, evaluation schemes need to be
specified. In the following, we discuss these aspects that are carried out in the knowledge model study.

Datasets In order to measure the knowledge that is “new” to a user, we designed our analysis tasks
over two random but fixed fictitious datasets. As for a normal dataset, different participants may have
different domain knowledge about it. Hence even from the same pattern discovered in this dataset, the
new knowledge that different participants gain varies. That means, for different users the scales of the
gained additional knowledge are incomparable, which further makes the study results untraceable. By using
fictitious datasets, initially all participants will have no prior knowledge about the datasets. This brings
their background knowledge of the dataset to the same level, which serves our need. Moreover, to be explicit
about the “new” knowledge, we planted different positive associative relations among the attributes into
each datasets. In addition, in order to test whether the knowledge model is data independent, we generated
two datasets, and accordingly adjusted the instructions of the corresponding study tasks. For the details of
the dataset generating process, see appendix (B.1)

The datasets are called “Lakeland” and “The Plain”. Both contain 1000 records of the socio-economic
status of the fictitious inhabitants in two different fantasy lands. The datasets are described by the same
attributes, where each attribute is associated with a random variable:

• X1 - Races of inhabitants, categorical attribute where X1 ∈ {Griffin,Diricawl,Werewolf}.

• X2 - Regions of inhabitants, categorical attribute where X2 ∈ {east,west,north, east}.

• X3 - Annual income in gold coins, numeric integral attribute where X3 ∈ {0, 1, 2, . . . , 1000}.
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• X4 - Annual spending on health care in percentage of income, numeric continuous attribute where
X4 ∈ [0, 1].

• X5 - Subjective happiness, categorical X5 ∈ {happy, unhappy}.

The injected positive associations in dataset “Lakeland” are:

• (Region = North ∧ Species = Diricawl),

• (Region = East ∧ Annual Health Care Spending = High ),

• (Species = Griffin ∧ Annual Income = High).

The injected positive associations in dataset “The Plain” are:

• (Annual Income = Normal ∧ Happiness = Happy),

• (Annual Income 6= Normal ∧ Happiness = Unhappy),

• (Annual Income = High ∧ Annual Heath Care Spending = High).

Tasks instruction As the participants have no prior knowledge about the composed fictitious data-
set, any patterns discovered in the datasets are new to them. To ensure the new knowledge conveyed to
participants are only in terms of the planted associative relations, participants are instructed to gain basic
knowledge about a dataset by studying the elementary statistics provided along with the dataset. Then,
for the analysis tasks, each participant is guided by the instructions to use the corresponding system to
discover a fixed number of patterns that conveys most knowledge additional what she just learned from the
column statistics (see Appendix B.2). By evaluating the knowledge contained in these patterns, we obtain
the required quantification of the knowledge that is “new” to a participant. The analysis task instructions
are adjusted according to the context of the two fictitious datasets.

Result Definition We define the result of an analysis task as the three patterns that in a user’s opinion
convey most knowledge about the underlying dataset (see Screenshot 5.1). The reason that a result consists
three patterns is to align with the number of planted pasterns in the dataset, so that in the best case all
aspects of the additional knowledge can be potentially discovered within one result. When performing an
analysis task, a user is required to maintain her result and submit once she is satisfied with the result or
simply get bored.

Evaluation Scheme In order to quantify the new knowledge learned by a participant, the analysis task
result generated by this participant is rated by human evaluators. This purpose is delivered to evaluators
by evaluation instructions that are presented to the evaluators at the beginning of the evaluation session
(see Appendix B.3 for details). In order to bring the evaluators to the same prior knowledge level as the
participants, the evaluation task instructions ask the evaluator to first gain basic knowledge about a dataset.
Then the instruction teaches participants how to use evaluation metrics (will be discussed soon) to evaluate
of the results of three other users. The evaluation task instructions is also adjusted according to the context
of the two datasets.

According to the instructions, evaluators rate the results according to a evaluation metric that consists
of one question and five answer options (see 5.2). The question reads:

How much addition knowledge about the current dataset do you gain from this highlighted set
of patterns, in addition to the elementary statistics of the attributes?

For a analysis result Xu′ generated by an participant u′, the participant u who rates result Xu′ are allowed
to choose one of five rating values ru(Xu′): 0 (none), 1 (almost none), 2 (a little), 3 (some), 4 (a lot). Once
a participant finishes and submits her task, her ratings will be stored in the database.
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Figure 5.1: Analysis task dashboard in the knowledge model study. The screenshot shows a participant has saved
three patterns (left bottom) that might convey to her much knowledge about the underlying data.

5.1.2 System Performance Metric

We quantify the efficiency of a system that provides new knowledge to user according to a system performance
metric: “average time need by participants to produce a valid result by using a system”. This is based on
the ratings ru generated by the human evaluators and the single pattern maximum discovering time tu that
is automatically recorded when executing the analysis tasks. The measurement tu is produced by recording
the discovering time tu,x that a user (denoted by u) spend on discovering each result pattern x ∈ Xu, where
Xu is the result pattern set submitted by u. Once a participant finishes an analysis task and clicks “Submit
Results”, the saved patterns as well as the longest time tXu

for discovering one of the three patterns (i.e.,
tXu

= maxx∈Xu
tu,x) are submitted to the database.

Therefor, the system performance metric measures the average time for discovering a valid results tS,rvalid
with system S (i.e., OCM system with (SOCMKM)/without (SOCM) the knowledge model), where rvalid ∈
1, 2, 3 is the “valid average rating” parameter that serves as a threshold. Let UX be the set of user who
rated analysis result X, denote a set of valid results within an analysis user group U as XU,rvalid = {Xu|u ∈
U∧ 1

|UXu |
∑
u′∈UXu

ru′(Xu) ≥ rvalid}, then we can compute the average time for discovering a set valid result

XU,rvalid with respect to analysis task group Uby:

tU,rvalid =
1

|XU,rvalid |
∑

Xu∈XU,rvalid

tXu . (5.1.1)

According to our study design, one system variant S corresponds two assignment group, e.g., the OCM
system with knowledge model is evaluated by group 2A and 2B. Hence, Formally the average time for
discovering a valid result of a system S is defined as:

tS,rvalid =
1

|S|
∑
U∈S

tU,rvalid (5.1.2)

We say that our hypothesis of the knowledge model is justified by a study instance, if for all rvalid ∈ 1, 2, 3,
we have measure in the study instance with relation: tSOCMKM,rvalid ≤ tSOCM,rvalid . That means, on average
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Figure 5.2: Rating task dashboard dashboard in the knowledge model study. The screenshot shows that a participant
has selected the first result and given the rating value: 0 (none).

the system with knowledge model spends less time on discovering results that are valid (according to their
additional knowledge) than the system without the knowledge model, which aligns with our hypothesis.

5.1.3 Assignment Logic

The assignment logic specifies how analysis tasks are assigned to participants and how the produced analysis
task results are distributed to evaluators. The participants will be assigned to perform one of the analysis
task according to the analysis task assignment logic. Once all participants has finished their analysis tasks,
each participant will be required evaluate the analysis task results that are distributed according to the
evaluation assignment logic.

Analysis Task Assignment Logic. At the beginning of the analysis session, analysis tasks are randomly
assigned to participants and each analysis task is performed by relatively the same number of participants.
There are two similar analysis tasks corresponding to either one of the datasets (A: Lakeland, B: The Plain).
As stated before, the knowledge model study consists of two OCM system variants: target system with the
knowledge model (System 1), control system without the knowledge model (System 2). Hence the study
participants will be split into four analysis task groups according to the different combinations of system
variants and datasets (1A, 1B, 2A, 2B). During an analysis session, a participant needs to perform an analysis
task according to her group settings, e.g., group 1A uses the OCM system with the knowledge model to
perform the analysis task associated with dataset “Lakeland”.

Evaluation Assignment Logic. In the evaluation session, the participants who explored the same dataset
will cross evaluate three random analysis task results that are related to another dataset, e.g., the participants
from group 1A and 2A will cross evaluate the analysis task results generated by group 1B and 2B, and vice
versa. This is because the participants performed the same analysis task usually gain different amount
knowledge about the data. If their results are evaluated by themselves, the evaluation results will be again
provided on participants with different knowledge about the dataset. Hence the evaluation results are biased,
and can not serves as evidences for the hypothesis testing. By cross evaluating the analysis task results,
the users from group 1A and 2A (1B and 2B) have no prior knowledge about the dataset “The Plain”
(“Lakeland”). Such cross evaluation setting allows us to obtain the unbiased ratings for the results from
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both analysis tasks, at the same time do not requrie extra participants for evaluation purpose only.

5.2 Study Implementation

Instantiated form on the previously described study design, we conducted a user study to test our hypothesis.
We deployed the OCM system a web server, a user can login the system via their own computer. There are in
total 16 participants of the study. Each participant receives an email with login account and credential. The
user accounts are pre-generated, each account corresponds to one of the OCM system configurations (i.e.,
with/without the knowledge model). These accounts are evenly and randomly assigned by one of analysis
tasks, according to the assignment logic defined in the study design (Section 5.1.3). The user study consists
two sessions. During the analysis session, a participant is required to follow the analysis task instructions
(Section 5.1.1) that is assigned to her previously and perform the corresponding analysis task. When all
participants finish their analysis task, participants are notified by email that the evaluation session is ready.
Then participants are asked to follow the evaluation instructions (Section 5.1.1) associated with her task
group and evaluate the assigned analysis task results. During the user study, the measurements that are
gathered according to the system performance metrics (Section 5.1.2) are collected. These measurements
are later analyzed in the study conclusion phase.

5.3 Study Conclusion

With the measurements (w.r.t system performance metrics) collected in the knowledge model study, we
computed the average time for discovering a valid result of both the OCM system with/without the knowledge
model. The result are summarized in the table (5.3.1). For more insights, see the intermediate measurements
of the study listed in appendix (B.4).

System Variant

Avg. Time (s)
for Valid Results

(rvalid = 1.0)

Avg. Time (s)
for Valid Results

(rvalid = 2.0)

Avg. Time (s)
for Valid Results

(rvalid = 3.0)
OCM without KM 694.25 803.96 inf

OCM with KM 563.63 563.63 505.5

Table 5.3.1: Average Time for Valid Results

The table shows that the system knowledge model take less time than the OCM system without the
knowledge model to find valid patterns in all different scales of threshold, i.e., tSOCMKM,rvalid ≤ tSOCM,rvalid for
all rvalid. According to the definition of the system performance metric in (Section 5.1.2), we conclude that
this study justifies our hypothesis: the OCM system with the knowledge model can provide a user additional
knowledge (in additional to what she already knows) more efficiently than the system without the knowledge
model.
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Chapter 6

Conclusion

This chapter discusses the main results of this thesis. After the discussion, the possible directions of the
follow up research are presented.

6.1 Discussion

The goal of this thesis is to develop a mechanism of measuring the amount of the additional knowledge
conveyed by mining results in additional to what a user knows. This is motivated by the observation that
state-of-art mining systems might present a user mining results that she already knows and filter out the
results that are potentially new to the user’s knowledge.

To achieve the goal, we first observe that the knowledge of a dataset is essentially conveyed by the
pattern measurements together with the pattern descriptions. To model in theory the new knowledge
conveyed by pattern measurements, we extended the work of [De Bie, 2013] that originally models the
subjective unexpectedness of patterns (see description in section 2.3). Instead, we presented an framework
(knowledge model) that quantifies the subjective unexpectedness of pattern measurements in Chapter 3.
The knowledge model is applicable in any data mining system that presents its mining results together with
general numerical measurements — real values generated by applying measure functions to mining results
based on a working dataset. In practice, due to the high computational complexity of the knowledge model,
we currently have no efficient implementation that computes the subjective unexpectedness of any numerical
measurements. However, for frequency measurements in specific, a better computational efficiency can be
achieved (see Section 3.4). The knowledge model for frequency measurements is implemented in the One
Click Mining system (see Section 4.2).

To test whether OCM with the knowledge model is able to present users new knowledge more efficiently
than OCM without the knowledge model, we developed a user study design (see Section 5.1) that is repeatable
for instantiating new studies and scalable for any size of participants group. By conducting a user study
that instantiated from the design, we confirmed our hypothesis (see Section 5.3).

6.2 Outlook

Based on the previous discussion of this thesis’ contributions, we now turn to the possible research topics
that might emerge in the future. There are two major potential research directions:

One direction is the to generalize the knowledge model in theory so that it is compatible with more data
types. As the knowledge model described in this thesis is only applicable to categorical datasets, an immediate
requirement would be to extend the knowledge model for ordinal and real valued datasets. Moreover, as
data is represented in various formats (e.g., graph, stream, etc.), further extending the knowledge model for
different data types allows the knowledge model to be applicable to various types of data analysis tasks.
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Another potential research direction is to investigate more efficient implementations of the knowledge
model. Our current implementation is based on frequency measurements only. This is because the exact
computation of the knowledge model in general is exponential in the size of input dataset. However, on
one hand, computing the exact value is a very strong requirement. For the cases that do not require the
exact computation of subjective unexpectedness, more efficient implementation techniques (e.g., randomized
computation) can be applied. To this end, it is important to identify the use cases that do not require exact
computation of the knowledge model, and investigate the corresponding efficient implementations. On the
other hand, like the knowledge model implementation for frequency measurements, one might also identify
other specific types of pattern measurements which allow efficient implementations of the knowledge model.
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Appendix A

Maximum Entropy Model

A.1 The MaxEnt Problem is a Concave Optimization Problem

A concave optimization problem consists of a concave objective function, a convex domain, and convex
constraint functions [Boyd and Vandenberghe, 2004, p. 137].

First we show that the domain P of the MaxEnt problem (3.2.1 - 3.2.3) is a convex set. Note that each
element P ∈ P is a mapping P : D→ [0, 1]. Any two elements Pi and Pj in P, denote their linear combination
Pk = θPi + (1− θ)Pj , where θ is a real number θ ∈ [0, 1]. Since Pi(D), Pj(D) ∈ [0, 1], for all D ∈ D, based
on previous construction we have

Pk(D) = θPi(D) + (1− θ)Pj(D) ∈ [0, 1], for all D ∈ D. (A.1.1)

This indicates that Pk ∈ P. According to the definition, the domain P is convex.
Then we show that the objective function (3.2.1) is a concave objective function over domain P. Explicitly,

we have the objective function g0:

g0(P (·)) =
∑
D∈D
−P (D) log(P (D)) (A.1.2)

where P ∈ P is a mapping P : D → [0, 1]. For the expression −P (D) log(P (D)) within the summation
operation, the data set D is fixed. By compute its second order derivative with respect to P (·), we have:

∂2

∂P (D)
2 − P (D) log(P (D)) = − 1

P (D)
(A.1.3)

by the definition of entropy, −0 log(0) = 0, and P (D) ∈ [0, 1] the second order derivative is negative for all
P (·), hence the expression within the summation operation is concave in terms of P (·). By the property
that the non-negative weighted sum of concave functions is concave [Boyd and Vandenberghe, 2004, p. 79],
the objective function g0 is therefore concave.

Finally we prove that the constraint functions gc, for all c ∈ C (3.2.2) and h (3.2.3) are convex. Notice
that the constraint functions are all of the form f(x) = Ax + b, where x ∈ R|D|×1, A ∈ R1×|D| and b ∈ R,
they are affine functions. For any xi,xj ∈ R|D|×1, θ ∈ [0, 1] we have :

f(θxi + (1− θ)xj) = A(θxi + (1− θ)xj) + b

= θAxi + (1− θ)Axj + θb+ (1− θ)b
= θf(xi) + (1− θ)f(xj)

(A.1.4)

hence by the definition of convex function, the constraints functions gc,∀c ∈ C (3.2.2) and h (3.2.3) are
convex functions.

Put all together, we proved that the MaxEnt problem is a concave optimization problem.
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A.2 Equivalence of the Lagrange Primal Problem

We proof that the Lagrangian primal problem (3.2.6) is equivalent to the convex optimization problem
(3.2.4). The primal problem reads:

min
P (·)

[
max
λ,µ

g′0(P (·)) +
∑
c∈C

λcgc(P (·)) + µh(P (·))
]

(A.2.1)

First, observe that for any feasible solution P (·) that fulfills constraints (3.2.2 - 3.2.3), we have constraint
functions gc(P (·)) = 0, for all c ∈ C and h(P (·)) = 0. On the other hand, for any infeasible solution P ′(·),
there are at least one constraint function is non-zero. So, by maximizing the Lagrangian with respect to
Lagrange multipliers the function value goes to ∞. We can summarize this formally,

max
λ,µ

L(P (·),λ, µ) = g′0(P (·))︸ ︷︷ ︸
objective of convex problem (3.2.4)

+

{
0 if P (·) is feasible
∞ if P (·) is infeasible

Hence, to find a feasible distribution P (·) that minimizes the primal problem, is equivalent to find a dis-
tribution that minimizes function g′0 under constraints (3.2.2 - 3.2.3), i.e., the convex optimization problem
(3.2.4).

A.3 Concavity of the Lagrangian w.r.t Multipliers λ, µ

To see why, we write down the Lagrangian (3.2.5):

L(P (·),λ, µ) = g′0(P (·)) +
∑
c∈C

λcgc(P (·)) + µh(P (·)) (A.3.1)

It is an affine function in terms of variable λc and µ with form f(x) = Ax+ b where x = (λ, µ)T ∈ R|C|+1,
A = (λ1g1(P (·)), . . . , λ|C|g|C|(P (·)), h(P (·))) ∈ R|C|+1, and b = g′0(P (·)) ∈ R. As the domain R|C|+1 is
convex and any affine function is both concave and convex on a convex domain, hence the Lagrangian is
concave with respect to the multipliers.

A.4 Convexity of the Lagrangian w.r.t Distribution Function P (·)
To prove the convexity, rewrite the Lagrangian (3.2.5):

L(P (·),λ, µ) =
∑
D∈D

P (D) logP (D) +
∑
c∈C

λc

(
fc(sxc

, Dobs)−
∑
D∈D

P (D)fc(sxc
, D)

)
+ µ

(
1− P (D)

)
=
∑
D∈D

(
P (D) logP (D)−

∑
c∈C

P (D)fc(sxc
, D)− µP (D)

)
+
∑
c∈C

fc(sxc
, Dobs) + µ

(A.4.1)

Only the first summation part in above expression is related to P (·), hence we can replace its inner expression
by function:

g(P (·)) = P (·) logP (·)−
∑
c∈C

P (·)fc(sxc , ·)− µP (·) (A.4.2)

as the first part P (·) logP (·) is convex on domain P (see A.1.3), and the rest are linear in P (·), hence g(P (·))
is a convex function in P (·). As the non-negative weighted of the convex functions is still a convex function,
the expression

∑
D∈D g(P (D)) is also a convex function in P (·). The Lagrangian in form (A.4.1) consists

a convex function in P (·) plus two fix term, so it is a convex functional with respect to the distribution
function P (·).
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A.5 Derivation of the Background Distribution

The Lagrangian of the optimization problem (3.2.4) reads:

L(P (·),λ, µ) =
∑
D∈D

P (D) logP (D)

+
∑
c∈C

λc

(
fc(sxc

, Dobs)−
∑
D∈D

P (D)fc(sxc
, D)

)
+ µ

(
1−

∑
D∈D

P (D)
)
.

(A.5.1)

Denote each part of the above expression as a function:

H(D) =
∑
D∈D

P (D) logP (D) (A.5.2)

G(D) =
∑
c∈C

λc

(
fc(sxc

, Dobs)−
∑
D∈D

P (D)fc(sxc
, D)

)
(A.5.3)

M(D) =µ
(

1−
∑
D∈D

P (D)
)
. (A.5.4)

compute functional derivative of H(D) with respect to P (·) [Gelfand and Fomin, 1964]:∑
D∈D

∂H

∂P (D)
φ(D) =

[
∂

∂ε
H
[
P (D) + εφ(D)

]]
ε=0

=

[
∂

∂ε

∑
D∈D

[
P (D) + εφ(D)

]
log
[
P (D) + εφ(D)

]]
ε=0

=
∑
D∈D

[
φ(D)log

[
P (D) + εφ(D)

]
+ φ(D)

]
ε=0

=
∑
D∈D

[
logP (D) + 1

]
φ(D).

(A.5.5)

hence the derivative has form:
∂H

∂P (D)
= logP (D) + 1. (A.5.6)

The functional derivative of G(D) with respect to P (·):∑
D∈D

∂G

∂P (D)
φ(D) =

[
∂

∂ε
G
[
P (D) + εφ(D)]

]
+ ε)

]
ε=0

= −
∑
c∈C

λc

[ ∑
D∈D

φ(D)fc(sxc
, D)

]
ε=0

= −
∑
D∈D

∑
c∈C

λcfc(sxc
, D)φ(D).

(A.5.7)

the derivative has form:
∂G

∂P (D)
= −

∑
c∈C

λcfc(sxc
, D). (A.5.8)
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The functional derivative of (A.5.4) with respect to P (·):∑
D∈D

∂M

∂P (D)
φ(D) =

[
∂

∂ε
M
(
P (D) + εφ(D)

]]
ε=0

=

[
− ∂

∂ε
µ
∑
D∈D

[P (D) + εφ(D)] + 1

]
ε=0

= −
∑
D∈D

µφ(D).

(A.5.9)

the derivative has form:
∂M

∂P (D)
= −µ. (A.5.10)

Put together, the derivative of the Lagrangian (A.5.1) with respect distribution function reads:

∂L

∂P (D)
=

∂H

∂P (D)
+

∂G

∂P (D)
+

∂M

∂P (D)

= 1 + logP (D)−
∑
c∈C

λcfc(sxc
, D)− µ

(A.5.11)

equating the derivative (A.5.11) to zero gives the desired distribution:

logP (D) = −1 +
∑
c∈C

λcfc(sxc , D) + µ

P (D) = eµ−1 · exp(
∑
c∈C

λcfc(sxc
, D))

(A.5.12)

A.6 Derivation of the Dual Function

The distribution obtained by maximize the Lagrangian with respect to P (·) (3.2.9) reads:

[t]P (·) =
1

Z(λ)
exp(

∑
c∈C

λcfc(sxc
, ·)). (A.6.1)

where Z(λ) is the partition function (3.2.10). Subject the distribution function P (·) back to the Lagrangian
yields the dual form of the optimization problem:

d(λ) =
∑
D∈D

P (D) logP (D) +
∑
c∈C

λc

(
fc(sxc , Dobs)−

∑
D∈D

P (D)fc(sxc , D)
)

+ µ
(

1−
∑
D∈D

P (D)
)

(A.6.2)

=
∑
D∈D

P (D) log
(exp(

∑
c∈C λcfc(sxc

, D))

Z(λ)

)
+
∑
c∈C

λc
(
fc(sxc

, Dobs)−
∑
D∈D

P (D)fc(sxc
, D)

)
(A.6.3)

+ µ
(
1−

∑
D∈D

P (D)
)

(A.6.4)

=
∑
D∈D

P (D) log(
1

Z(λ)
) +

∑
D∈D

P (D) log
(

exp
(∑
c∈C

λcfc(sxc
, D)

))
(A.6.5)

−
∑
c∈C

λc
∑
D∈D

P (D)fc(sxc
, D) +

∑
c∈C

λcfc(sxc
, Dobs) + µ(1− 1) (A.6.6)

=
∑
D∈D

P (D) log(
1

Z(λ)
) +

∑
D∈D

P (D)
∑
c∈C

λcfc(sxc , D)−
∑
c∈C

λc
∑
D∈D

P (D)fc(sxc , D) (A.6.7)

32



+
∑
c∈C

λcfc(sxc , Dobs) + µ(1− 1) (A.6.8)

=− log(Z(λ))
∑
D∈D

P (D) +
∑
c∈C

λcfc(sxc
, Dobs) (A.6.9)

=− log(Z(λ)) +
∑
c∈C

λcfc(sxc
, Dobs). (A.6.10)

Notice that the partial derivative of the dual function vanishes with respect to its optimum λ∗c′ :

∂L(λ∗)

∂λ∗c′
= − ∂

∂λ∗c′
log
(∑
D∈D

exp
(∑
c∈C

λ∗cfc(sxc
, D)

))
+
∑
c∈C

λ∗cfc(sxc
, Dobs)

= −
∑
D∈D

exp
(∑

c∈C λ
∗
cfc(sxc

, D)
)
· fc′(sxc′ , D)∑

D∈D exp
(∑

c∈C λ
∗
cfc(sxc , D)

) + fc′(sxc′ , Dobs)

= −
∑
D∈D

(
P (D)fc′(sxc′ )

)
+ fc′(sxc′ , Dobs)

= 0

(A.6.11)

that says:

ED∼P∗B,D[fc′(sxc′ , D)] =

∑
D∈D exp

(∑
c∈C λ

∗
cfc(sxc

, D)
)
· fc′(sxc′ , D)∑

D∈D exp
(∑

c∈C λ
∗
cfc(sxc

, D)
) = fc′(sxc′ , Dobs) (A.6.12)

This indicates that by searching for the global maximum of the dual function, we are essentially finding
the distribution that has the expectation of a measurement equals to the corresponding measurement in the
observed data Dobs. By corresponding, we mean that the two measurements generated by the same measure
function.

A.7 Concavity of the Lagrange Dual Function Parametrizied Only
by λ

To prove that the Lagrange dual function in from (3.2.11) is concave on its domain R|C|, we rewrite the dual
function as:

d(λ) = − log
(∑
D∈D

exp
(∑
c∈C

λcfc(sxc , D)
))

+
∑
c∈C

λcfc(sxc , Dobs)

= − log
(∑
D∈D

∏
c∈C

exp
(
λcfc(sxc

, D)
))

+
∑
c∈C

λcfc(sxc
, Dobs)

= − log
( ∏
c∈C

∑
D∈D

exp
(
λcfc(sxc

, D)
))

+
∑
c∈C

λcfc(sxc
, Dobs)

= − log
(∑
D∈D

exp
(∑
c∈C

λcfc(sxc , D)
))

︸ ︷︷ ︸
1©

+
∑
c∈C

λcfc(sxc , Dobs)︸ ︷︷ ︸
2© Q(λ)

(A.7.1)

In part 1©, the expression
∑
c∈C λcfc(sxc , D) within the exponential is linear in λc, for all c ∈ C. As part 1©

is a negative logarithm of the sum of exponentials, it is concave on R|D| (see proof [Boyd and Vandenberghe,
2004, p. 74 ]). And as the composition is concave in R|C| (see proof [Boyd and Vandenberghe, 2004, p. 79]).

The expression in part 2© is also concave. By applying the definition of convex function, for 0 ≤ θ ≤ 1
and λ,λ′ ∈ R|C|:
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att0 att1 att2

a e j
a d i
b d i
b f j
c f h
c g j

Table A.8.1: Toy dataset with three categorical attributes

Q(θλ+ (1− θ)λ′) = −
∑
c∈C

(
θλc + (1− θ)λ′c

)
fc(D)

= −
∑
c∈C

θλcfc(D)−
∑
c∈C

(1− θ)λ′cfc(D)

= −θ
∑
c∈C

λcfc(D)− (1− θ)
∑
c∈C

λ′cfc(D)

= θQ(λ) + (1− θ)Q(λ′)

(A.7.2)

hence the second part is concave in R|C|.
By applying the property that the non-negative weighted sums of concave functions is concave, we can

conclude that the dual function is concave.

A.8 An Example of Computing Unexpectedness of Frequency Meas-
urements

Here we give a concrete toy example to show the details of calculating subjective unexpectedness for frequency
measurements.

Consider a dataset D given in table (A.8.1), the dataset contains three categorical attributes with value
space Vatt0 = {a, b, c}, Vatt1 = {d, e, f, g}, and Vatt2 = {h, i, j}. Consider three association patterns:

• x1 with sx1
= {attr0 = a ∧ attr1 = e}, and has frequency measurement mfreq,x1

= 1/6,

• x2 with sx2 = {attr1 = e ∧ attr2 = j}, and has frequency measurement mfreq,x2 = 1/6 ,

• x3 with sx3
= {attr0 = a ∧ attr1 = j}, and has frequency measurement mfreq,x3

= 1/6.

At the beginning, the user has not studied any pattern. According to the MaxEnt principle, the background
distribution is uniform, hence obtain the expected frequency measurements by counting:

m̂freq,x1 =

∑
v∈V sx1(v)

|V|
=

1

12

m̂freq,x2
=

∑
v∈V sx1

(v)

|V|
=

1

12

m̂freq,x3 =

∑
v∈V sx1(v)

|V|
=

1

9

(A.8.1)

where V = Vatt0 × Vatt1 × Vatt2 . Then we compute the subjective unexpectedness for the three pattern
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measurements:

SubUnexp(mfreq,x1
) = 1− 1

2
= 0.5

SubUnexp(mfreq,x2
) = 1− 1

2
= 0.5

SubUnexp(mfreq,x3
) = 1− 2

3
= 0.33

(A.8.2)

Now, assume that the user has studied x1 and x2 two patterns. Two constraints are added to the constraint
set C = {c1, c2}, where c1 and c2 are induced by frequency measurements mfreq,x1 and mfreq,x2 respectively.
By solving the optimization problem (3.2.1) we have the Lagrange multipliers: λc1 = 0.9563 and λc2 = 0.9563.
With the updated Lagrange multipliers, the updated expected measurements read:

m̂freq,x1
=

exp(λc1) + exp(λc2) + exp(λc1+c2)

2 exp(λc1) + 2 exp(λc2) + exp(λc1 + λc2) + 31
=

1

6

m̂freq,x2
=

exp(λc1) + exp(λc2) + exp(λc1+c2)

2 exp(λc1) + 2 exp(λc2) + exp(λc1 + λc2) + 31
=

1

6

m̂freq,x3
=

exp(λc1 + λc2) + 3

2 exp(λc1) + 2 exp(λc2) + exp(λc1 + λc2) + 31
= 0.15149

(A.8.3)

the subjective unexpectedness also changes:

SubUnexp(mfreq,x1
) = 1− 1 = 0

SubUnexp(mfreq,x2
) = 1− 1 = 0

SubUnexp(mfreq,x3
) = 1− 0, 91 = 0.09

(A.8.4)

as we can see that the subjective unexpectedness of first and second measurement drops to zero, because the
the corresponding pattern x1 and x2 has already been studied. The unexpectedness of third measurement
drops from 0.33 to 0.09 because the semantic knowledge of pattern x3 can be derived from the first two,
hence it become expectable after that the first two have been discovered.
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Appendix B

User Study

B.1 Data Generating Process

The datasets used in the knowledge model study are randomly generated subject to the predefined associative
relations among the data attributes. These relations are essentially the conditional dependencies among the
attribute-associated random variables. These dependencies are represented by the corresponding graphical
model in Figure (B.1a) and (B.1b).

X1

X2

X3

X4

X5

(a) graphical model for dataset “Lakeland”

X1

X2

X3

X4

X5

(b) graphical model for dataset “The Plain”

Figure B.1: Graphical models that represent the dependencies among the attribute within both datasets.
X1 - Race of inhabitants, X2 - Region of inhabitants, X3 - Annual income, X4 - Annual health care spending, X5 -
Happiness

For dataset “Lakeland”, the associated probability distributions are:

X1 : P (X1|X2 = east) = (0.05, 0.05, 0.9), otherwise P (X1) = (0.45, 0.45, 0.1)

X2 : P (X2) = U({north, east, south,west})
X3 : P (X3|X1 = Griffin) = N (700, 200), otherwise P (X3) = N (500, 200)

X4 : P (X4|X2 = east) = N (0.7, 0.2), otherwise P (X4) = N (0.5, 0.2)

X5 : P (X5) = U(happy,unhappy)

(B.1.1)

where U denotes the uniform distribution, N denotes the normal distribution. For dataset “The Plain”,
the associated probability distributions are:

X1 : P (X1) = U({Werewolf,Griffin,Diricawl})
X2 : P (X2) = U({north, east, south,west})
X3 : P (X3) = N (500, 200)

X4 : P (X4|X3 ≥ 750) = N (0.8, 0.2), P (X4|X3 < 750) = N (0.4, 0.2)

X5 : P (X5|X3 ∈ [350, 750]) = B(0.7), otherwise P (X5) = B(0.2)

(B.1.2)
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where B denotes the Bernoulli distribution.
To generate a dataset, samples are drawn attribute wise according to the previously defined distributions.

For dataset “Lakeland” sample sequence of the attributes represented by random variable: (X2, X1, X3, X4, X5).
For dataset “The Plain” the sequence is: (X2, X1, X3, X4, X5). For each attribute, 1000 samples are gen-
erated as one column in the corresponding dataset. Hence we obtain a dataset by putting sample columns
together, and align the samples by their sampling order.

B.2 Analysis Task Instructions

The analysis task instructions consist of two HTML documents. The first documents describes the analysis
task that we designed to test the hypothesis of the knowledge model. The second one is a step-by-step
instruction of how to operate the OCM system to solve the analysis task. The instructions are the same for
different datasets, except the dataset name is replaced by another one.

B.2.1 Analysis Task Description

As a new employee of the Data Science Department of the Lakeland (The Plain) government, you have
to get familiar with the socio-economics status of your country. Go on and use our data mining tool
to discover key phenomena from Lakeland (The Plain)’s socio-economic data. The data is a sample of
1000 inhabitants’ socio-economic records of in your country.

The data mining tool will propose statements about the data, and measures the associations among
the statements. Such information is summarized in graphic representations (patterns) like the figure
below:

Figure B.2: graphic representation of an association pattern.

• Sec.1 states whether the statements are positively or negatively associated.

• Sec.2 lists the considered statements, along with the frequency (proportion of inhabitants) that
each individual statement holds true.

• Sec.3 visualizes the difference between the expected frequency (blue bar) and the actual frequency
(red bar) of the statements. The larger the difference the stronger the positive/negative association
is.

Patterns can assist you to identify the socio-economic phenomena in the data. For example, accord-
ing to the statements of the pattern above: the inhabitants who have very high income, high health
insurance spending, and also feels unhappy form a group that consists of 5.3% of the sample popula-
tion. This group population is smaller than the expected group population (7.4%) with the assumption
that the statements are independent with each other, which indicates the positive association among
the statements. This phenomenon can have many interpretations, one of which can be: ”very rich in-
habitants in the country are insecure about their healthy, which makes them unhappy”. What is your
interpretation?
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Click on ”Next” to continue. On the next page, you will find a more detailed instruction of your
task and a quick guide of the mining tool.

B.2.2 System Instruction

Ready for the real tasks? Before that, take some time to go over the step-by-step instructions below of
how to operating our mining tool.

Figure B.3: mining dashboard overview

The dashboard of the mining tool consists of four main components:

• Data Area (Fig. B.3.a) gives you the overview of the data. Within this area, each data column
corresponds to a socio-economic attribute. By pointing the cursor at the header of each data
column (Fig. B.3.b), you will see the elementary statistics of that column.

• Mine Button (Fig. B.3.c) allows you to request new patterns by clicking on it.

• Candidate Area (Fig. B.3.d) will display the patterns produced by the mining process you just
activated.

• Result Area (Fig. B.3.e) allows you to assemble your results by dragging the patterns from the
candidate area.
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Figure B.4: pattern operations

You need to go through the following steps to perform the analysis task:

I. Study the statistics of each column, and get some elementary knowledge of your country’s socio-
economic status.

II. Once you are done, click the mine button and patterns will show up in the candidate area. This
might take some time, thanks for your patience.

III. Investigate the candidate patterns and save a pattern that you found interesting by dragging it
(Fig. B.4.a) to the result area (Fig. B.4.b).

IV. You may delete a non-interesting patterns by clicking the cross icon upper right(Fig. B.4.c).

V. Repeat step II. and IV., refine your pattern selection until you think you have discovered the most
interesting three patterns to describe the socio-economic status of Lakeland (The Plain).

When you are satisfied with the results, submit the discovered result by click on the ”Submit” button
(Fig. B.4.d).

B.3 Rating Task Instruction

As the governor of Lakeland (The Plain), you are requested to evaluate the work of the new employees
in the Data Science Department. Please read the following instructions to get familiar with the rating
system:
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Figure B.5: evaluation dashboard

I. The evaluation dashboard consists of three main components: Data Area (fig. B.5.a) gives you
the overview of the data, where each data column corresponds to a socio-economic attribute (fig.
B.5.b). By pointing the cursor at the header of each data column, you will see the elementary
statistics of that column; Result Area (fig. B.5.c) consists of the results to be rated; Rating Area
(fig. d) consists of rating metrics that you can click on to rate the results.

II. Please study the statistics of each column in the data area.

III. Investigate the results discovered by three employees in the result area. Each result consists of
three patterns.

IV. To rate a pattern, fist click on it to select (the pattern will be highlighted), then click on the cor-
responding value of the right-hand-side rating criteria (fig.B.5.d):How much additional knowledge
about Lakeland (The Plain) do you gain from the current result, in addition to the elementary
statistics of the attributes?

Once you have rated the three results, click ”Submit” to save (fig.B.5.e).

B.4 Intermediate Sutdy Measurments

Table B.4.1 summarized the average time of discovering valid results among groups. It show that task group
wise the knowledge model take less time than the OCM to find valid patterns in different scales of threshold.
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System Variant Dataset

Avg. Rating

(0-4)

Avg. Rating Normalized

by Time (s)
Avg. Rating Normalized

by User

OCM Lakeland 2.125 0.00893 1.182

Knowledge Model Lakeland 2.500 0.00812 1.573

OCM The Plain 2.893 0.00530 2.118

Knowledge Model The Plain 3.042 0.00881 2.323

Table B.4.2: Average Ratings

System Variant Dataset

Avg. Time (s)
for Valid Results

(rvalid = 1.0)

Avg. Time (s)
for Valid Results

(rvalid = 2.0)

Avg. Time (s)
for Valid Results

(rvalid = 3.0)
OCM Lakeland 810.25 1029.67 inf

Knowledge Model Lakeland 550.75 550.75 732.0
OCM The Plain 578.25 578.25 545.5

Knowledge Model The Plain 576.50 576.50 279.0

Table B.4.1: Average Time for Valid Results by Group

Apart from the system performance metric tS,rvalid , by combining the result metrics (i.e., the discovering
time tx,u and the user rating ru(Xu′) that we can obtain three combined measures:

1. Average rating of an analysis group rU. Denote the users of an analysis group as U (e.g., users of 1A:
U1A), let Uu be the set of users whose analysis task results are evaluated by user u. The average rating
of an analysis group U is defined as:

rU =
1

|U|
∑
u∈U

∑
u′∈Uu

(ru(Xu′))

|Uu|
. (B.4.1)

2. Average rating normalized by time ‖rU‖time. This measure is computed as:

‖rU‖time =
1

|U|
∑
u∈U

∑
u′∈Uu

(ru(Xu′)/tXu)

|Uu|
(B.4.2)

3. Average rating normalized by user ‖rU‖user. Denote the normalized user rating as ‖ru(·)‖user =
ru(·)/

(∑
u′∈Uu

(ruXu′)
)
, then we have the average rating:

‖rU‖user =
1

|U|
∑
u∈U

∑
u′∈Uu

(‖ru(Xu′)‖user)

|Uu|
. (B.4.3)

We summarize the corresponding measurements generated by applying the above measures to the knowledge
model study in table B.4.2. It shows that the knowledge model setting has average ratings in all aspects
better than the system variant without knowledge model. Notice the ”Avg. Rating Normalized By Time(s)”,
for the dataset ”Lakeland” OCM is slightly better than the Knowledge model. This is because the knowledge
model requires exponential computational time, and it trades off the pattern quality.
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