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Abstract. Projection Pursuit aims to facilitate visual exploration of
high-dimensional data by identifying interesting low-dimensional projec-
tions. A major challenge in Projection Pursuit is the design of a projection
index—a suitable quality measure to maximise. We introduce a strategy
for tackling this problem based on quantifying the amount of information
a projection conveys, given a user’s prior beliefs about the data. The
resulting projection index is a subjective quantity, explicitly dependent
on the intended user. As an illustration, we developed this principle for
two kinds of prior beliefs; the first leads to PCA, the second leads to a
novel projection index, which we call t-PCA, that can be regarded as a
robust PCA-variant. We demonstrate t-PCA’s usefulness in comparative
experiments against PCA and FastICA, a popular PP method.

1 Introduction

The analysis of high-dimensional data often starts with dimensionality reduc-
tion, to facilitate initial visual exploration by a human user. Most analysts
instinctively use Principal Component Analysis (PCA) [1]: it is widely avail-
able, computationally efficient, easy to interpret, and in the common situation
where the data lies close to a low-dimensional subspace, PCA is effective in re-
trieving it. However, in user interactions with the PRIM-9 system for interactive
data exploration [2], it was observed that users tended to prefer projections that
reveal some form of structure, rather than high variance as preferred by PCA.
Later, [3] gave theoretical arguments for why Normally-distributed projections
are least interesting; they essentially reveal no structure in the data.

Quantifying the extent to which a projection is interesting is riddled with
conceptual and practical difficulties. To the early Projection Pursuit (PP) re-
search protagonists, it seemed obvious that a universally useful projection index
(which formalizes the interestingness of a projection) cannot exist (see e.g. [3]).
Therefore, lots of different projection indices were introduced. Most of these
projection indices quantify the extent to which the projected data’s distribution
departs from the Normal distribution, and all strike a different balance between
practical usefulness, computational complexity, and robustness against outliers
(see, e.g. [2, 3]). Indeed, due to the elusive nature of the core question of what
makes a projection interesting, the focus shifted towards secondary questions;
robustness aspects and computational properties of projection indices.
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Contributions. Our aim is to return focus on the user once again, and directly
ask the question of how interesting a given data projection is to a particular user.
Our work presents the first generic design strategy for projection indices that
explicitly depend on the intended user. In Section 2, we introduce a strategy
for quantifying the interestingness of a projection. In Sections 3 and 4, we then
apply this strategy for two particular types of prior beliefs, leading to PCA in the
first case, and a novel projection index in the second, which we call t-PCA and
which could be considered a robust variant of PCA. We end with an empirical
comparison that illustrates the benefits of t-PCA as compared to standard PCA
and FastICA, a popular PP method also used for ICA [4]. A version of this
manuscript with detailed derivations is available as a technical report online1.

2 The subjective information content of a data projection

Our strategy to quantify the subjective information content of a data projection
follows the FORSIED framework [5, 6]. To quantify the information content of
a projection, or more generally any pattern, FORSIED relies on the availability
of a user’s prior belief state in the form of a probability density pX over the
set of possible values for the data X—in casu over Rn×d. Given this so-called
background distribution, one can then compute the marginal probability density
function of a data projection qw = Xw defined by the weight vector w ∈ Rd.

We call a projection pattern a statement of the form qw ∈ [X̂w, X̂w + ∆1),
specifying that the value qw of the projected data lies within an interval of width
∆ around X̂w (with X̂ ∈ Rn×d the empirical data). This is what is conveyed to

a user through a scatter plot of the projections X̂w, with plotting resolution ∆.
Writing pXw to denote the marginal probability density function of a projection,

the smaller the probability Probqw∼pXw

(
qw ∈ [X̂w, X̂w + ∆1)

)
, the more sur-

prising and hence informative this pattern would be to that particular user. In
[5], it is argued that the negative logarithm of this probability is shown to be a
good measure of the Subjective Information Content (SIC):

SIC
(
X̂w

)
= − log

(
Probqw∼pXw

(
qw ∈ [X̂w, X̂w + ∆1)

))
This is what we propose as a generic projection index, quantifying the interest-
ingness of a projection.

An important question is how pX and hence the marginals pXw can be ob-
tained, without overburdening the user. [5] suggests that the user is often capa-
ble of specifying aspects of their belief state as constraints on expected values
of specified statistics of the data. It is then argued that the Maximum Entropy
(MaxEnt) distribution subject to these constraints is an attractive choice, given
its unbiasedness and robustness, and in being an exponential family model, the
inference of which is well understood and often computationally tractable.

1http://arxiv.org/abs/1511.08762



3 PCA: an information theoretic interpretation

Standard PCA can be derived using the above strategy as follows. A user not
expecting any outliers can be assumed capable of expressing an expectation
about the value of the average two-norm squared of the data points:

EX∼pX

{
1

n

n∑
i

x′ixi

}
= σ2. (1)

The MaxEnt distribution subject to this constraint is well known and equal
to a product distribution of multivariate Normal distributionsN (0, σI), with one
factor for each data point xi. Given a Normal random vector x ∼ N (0, σI), a
projection onto a weight vector w with w′w = 1 is also Normal: x′w ∼ N (0, σ).
Thus, the marginal probability density function pXw for the projection qw = Xw
of a dataset X sampled from the background distribution is given by:

pXw(qw) =
1

√
2πσ2

n exp

(
−q′wqw

2σ2

)
.

We can then compute the SIC of a projection pattern qw ∈ [X̂w, X̂w + ∆1)
as minus the logarithm of its probability under this marginal density function

pXw. Noting that for small enough ∆, Probqw∼pXw

(
qw ∈ [X̂w, X̂w + ∆1)

)
≈

∆n · pXw(X̂w), this leads to:

SIC
(
X̂w

)
= − log

(
pXw(X̂w)

)
− n log(∆)

=
n

2
log(2πσ2)− n log(∆) +

1

2σ2
w′X̂′X̂w. (2)

Finally, for fixed ∆, maximizing the SIC from Eq. (2) is done by solving:

max
w

w′X̂′X̂w, s. t.w′w = 1,

equivalent to the optimization problem for finding the first principal component
in PCA. This can be extended straighforwardly to sets of components.

4 t-PCA: for users expecting a heavy tailed distribution

The previous section elucidates the assumptions on the user (prior belief on the
average squared norm of the data points) and visualization approach (constant
resolution) for PCA to be optimal. We develop an alternative to PCA for when
the user’s prior beliefs are altered to be more accommodating for outliers. More
specifically, we propose the user’s prior beliefs could have the following form:

EX∼pX

{
1

n

n∑
i

log

(
1 +

1

ρ
x′ixi

)}
= c.



That is, rather than specifying an expectation on the spread of the data, for
small values of ρ the user specifies an expectation on the order of magnitude of
the spread. In other words, when the user expects outliers to be present, they
may feel able to specify an expectation on the average order of magnitude of the
2-norms of the data points, rather than on the average of their 2-norms.

For notational convenience, let us introduce the function κ(ν) = ψ
(
ν+d
2

)
−

ψ
(
ν
2

)
, where ψ is the digamma function. In the sequel, the value of κ−1(c) will

need to be used, denoted as ν for brevity. Writing Γ for the gamma function,
the background distribution can be derived using [7], where it is shown that the
MaxEnt distribution subject to the specified prior information is the product of
independent multivariate t-distributions with density function px:

px(x) =
Γ
(
ν+d
2

)√
(πρ)dΓ

(
ν
2

) · 1(
1 + 1

ρx′x
) ν+d

2

.

Again, for each data point there is a factor in this product distribution.
Note that for ρ, ν →∞, ρν → σ2 this density function tends to the multivari-

ate Normal density function with mean 0 and covariance σ2I. For ρ = ν = 1 it
is a multivariate standard Cauchy distribution, which is so heavy-tailed that its
mean is undefined and its second moment is infinitely large. Thus, this type of
prior belief can model the expectation of outliers to varying degrees.

The marginals of a t-distribution with given correlation matrix are again a
t-distribution with the same number of degrees of freedom, obtained by simply
selecting the relevant part of the correlation matrix [8, 9]. This means that the
marginal density function for the data projections qw = Xw onto a vector w
with w′w = 1 (and qw,i , x′iw) is:

pXw(qw) =
∏
i

px′w(qw,i),where px′w(qw,i) =
Γ
(
ν+1
2

)
√
πρΓ

(
ν
2

) · 1(
1 + 1

ρq
2
w,i

) ν+1
2

.

Thus the SIC of the projection pattern qw ∈ [X̂w, X̂w + ∆1) is:

SIC
(
X̂w

)
=
ν + 1

2

n∑
i=1

log

(
1 +

1

ρ
(x̂′iw)2

)
− n log(∆) + a constant. (3)

If we assume again that ∆ is constant, using w′w = 1, and ignoring some
constant factors and terms, maximising the SIC is thus equivalent to solving:

max
w

n∑
i=1

log
(
ρ+ (x̂′iw)2

)
, s. t.w′w = 1. (4)

Clearly, the larger w′w, the larger the objective, so the constraint can be relaxed
to w′w ≤ 1. The optimization problem is more complex, but can be efficiently
addressed with standard toolboxes; we used ManOpt (http://www.manopt.org).
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Fig. 1: Left: dominant PCA vs. t-PCA (ρ = 0) projections. Middle, right: data
in the original space, visualised including and excluding outliers, with weight
vectors of PCA, t-PCA (ρ = 1, 10, 100), and PCA fitted excluding the outliers.

5 Empirical evaluation

We first compared PCA and t-PCA on synthetic data. We generated a dataset
with two populations, both sampled from a 100-dimensional multivariate Normal
distribution with diagonal covariance: a population of 8000 points with a small
spread, and a population of 2000 points with a large spread. Figure 1 (data set
1, left) shows that for this data the dominant PCA component is determined
almost fully by the small population with large spread. In contrast, t-PCA offers
an insight into the large population with lower spread as well.

To analyse the robustness of t-PCA, we generated a dataset consisting of
two populations with different covariance structures: 1000 data points sampled

fromN
(

0,

(
4 0
0 1

))
, and 100 ‘outliers’ from N

(
0,

(
16 12
12 13

))
. Figure 1

(data set 2, middle and right) shows the weight vectors resulting from PCA, t-
PCA, and PCA had there been no outliers. The middle plot shows that the
PCA result is determined primarily by the outliers. The right plot shows the
same weight vectors on top of a scatter plot without the 100 outliers, illustrating
that t-PCA is hardly affected by outliers (the lower ρ, the less it is affected).

We also tested PCA, t-PCA2, and FastICA3 on the Shuttle data4, and a
reduced version5 of the 20 NewsGroups data. Figure 2 shows that in both
cases, t-PCA reveals more interesting structure in the data, although for 20
NewsGroups the structure is somewhat similar to PCA and does not appear to
separate the classes. The FastICA projection for 20 NewsGroups is practically
useless, because the weight vectors have all mass on a single dimension. The
t-PCA weight vectors are also sparse, yet t-PCA gives the largest spread of data
points in both visualizations.

2ρ = 10−5 multiplied by a measure of the scale of the data equal to the square root of the
average squared norm of all data points.

3With default parameters.
4https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
5http://cs.nyu.edu/∼roweis/data.html



Fig. 2: Top two-component projections by t-PCA, PCA, and FastICA.

6 Conclusions

PCA is often a suboptimal choice for dimensionality reduction, e.g. in the pres-
ence of outliers. The Projection Pursuit literature addressed this by means of the
introduction of numerous projection indices that quantify the interestingness of
projections in different ways. Alternatively, various authors proposed principled
robust versions of PCA recently, e.g. [10]. These lines of work are useful when
the assumptions made are valid, but they do not address fundamentally how
interesting a data projection is to a user. We introduced an approach to this
elusive problem, explicitly recognizing the subjective nature of ‘interestingness’.
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